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The reactive uptake of gases by a particle is explored by numerically solving the associated partial differential
equations. These equations explicitly couple the diffusion and reaction of multiple species in the particle.
This approach makes it possible to calculate the concentration of each reactant within the particle as a function
of both time and position and to examine the impact of concentration gradients on the rate of uptake. The
effect of liquid diffusion on the rate of uptake is explored for a reference reaction (O3 + oleic acid particles)
as a function of the particle size and the liquid-state concentration of the species taken up from the gas phase.
Diffusion within the particle is found to significantly limit uptake for large particles and the large gas-phase
concentrations often used in laboratory experiments, although it is typically less important under atmospheric
conditions. This numerical approach to solving the diffusion-reaction equations is also used to modify the
common electric circuit resistance model for heterogeneous uptake to make it more applicable when diffusion
within the particle is limiting.

Introduction

Much recent work in atmospheric chemistry has focused on
identifying and characterizing the composition and chemistry
of aerosol particles. These aerosols are both natural and
anthropogenic in origin and can significantly impact the
climate, local air quality, and human health.1 The manner
in which aerosols are studied in both the troposphere and
the stratosphere has advanced, including the increasingly
widespread use of aerosol mass spectrometers.2-6 It is now
possible to obtain detailed information about particle size and
composition on a near real-time basis and to correlate these
data with measurements of ambient trace gas concentrations.
The interactions of gas-phase species with aerosol particles
are not well understood, however. The ability of gas-particle
reactions to change the composition, size, reactivity, and
hygroscopicity of particles has made this an active area of
investigation.7-9 The complexity and diversity of aerosols
found in the atmosphere make it difficult to characterize the
kinetics of such gas-particle reactions. However, recent labora-
tory studies in which the composition of reacted particles is
quantitatively monitored have made it possible to measure the
rate of uptake of a gas-phase species by aerosol particles.10-12

These studies have offered insight into the complex processes
governing the uptake of gas-phase species by particles with
application to both laboratory systems and authentic atmospheric
particles.

One convenient method used to interpret experiments mea-
suring the uptake of a gas-phase species, X, by a condensed-
phase species, Y, is the electric circuit resistance, or “resistor,”
model.13-15 In this model, the rate of each process contributing

to the overall rate of uptake, including gas-phase diffusion,
thermal accommodation and reaction at the surface, and
solvation and reaction in the bulk, is represented by a conduc-
tance,Γ. The inverse of each conductance, 1/Γ, represents a
resistance to uptake, and these individual terms can be combined
in series or in parallel to represent the overall resistance to
uptake, 1/γ.

To date, the resistor model as generally employed has
not included diffusion of the liquid reactant in the particle,
although Worsnop et al.16 have recently generalized it for
this purpose. In light of recent experimental results11 that
show the importance of these diffusion processes, we have
numerically solved the corresponding coupled differential
equations. We use this numerical solution as a benchmark
against which to evaluate the ability of the resistor model to
describe the rate of reactive uptake for a range of particle sizes
and diffusion rates. We also derive a modified resistor model,
the accuracy of which is verified by using our coupled PDE
approach. This model requires orders of magnitude less
computational time than the general numerical solution, yet it
proves to be more accurate than current resistor models in
describing the rate of uptake when limited by diffusion within
the particle.

Mathematical Treatment

The general solution for the time-dependent concentration
profiles within a reactive particle can only be obtained by
considering the simultaneous diffusion and reaction of each
species present within the particle.17-19 Here, we will evaluate
the simplified case of only two reactants, one of which originates
in the gas phase and is taken up by the particle, the other of
which is initially present in the particle. However, the approach
outlined below can be generalized to more complex systems
containing a larger set of reactants and reactions.
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The uptake of a species, X, from the gas phase by a particle
containing a species, Y, is governed by reaction and diffusion
within the particle:

whereDX andDY are the diffusion constants (cm2 s-1) of the
respective species (in Y), andk2 is the second-order rate
coefficient (M-1 s-1) for the reaction between X and Y.
Although other processes can contribute to the rate of uptake,
we assume that they are fast and are therefore not rate-limiting.

The standard resistor model used to describe heterogeneous
uptake makes two assumptions that allow these diffusion-
reaction equations to be solved analytically. The first assumption
is that the species X is in steady state, i.e., [X] is not a function
of time. The other assumption is that [Y] is not a function of
the position within the particle. These approximations are valid
only when (a) X reacts so quickly with Y that it does not have
the opportunity to diffuse very deeply into the particle, and (b)
Y diffuses quickly enough with respect to reaction that [Y] is
uniform throughout the particle. It should be noted that the latter
assumption is not valid for viscous species and consequently
the resistor model fails.

In the approach outlined below, we solve the set of coupled
partial differential equations (eqs 1 and 2) numerically so that
the assumptions described above are avoided. Nevertheless, to
simplify the equations we assume that the particles are spherical
such that they can be rewritten in spherical polar coordinates
as

We have solved this set of equations using the numerical
method of lines technique in Mathematica (v 4.1.0.0, Wolfram
Research). In solving these equations, we have made the
following simplifying assumptions: (1) that the concentration
of X at the surface of the particle is in equilibrium with the
gas-phase concentration, (2) that the flux of X at the center of
the particle is zero, and (3) that the flux of Y at both the center
and the surface is zero. In addition, we have specified that the
particle exists initially as a pure droplet of Y with the
equilibrium concentration of X at the surface. These assumptions
are expressed in the corresponding boundary and initial condi-
tions, namely: (1) [X]surf ) HXPX (whereHX is the Henry’s
Law constant for X in Y, andPX is the pressure of X), (2)
∂[X]/ ∂r|r)0 ) 0, (3) ∂[Y]/ ∂r|r)0 ) ∂[Y]/ ∂r|r)a ) 0 (where
a is the radius of the particle), (4) [Y](t ) 0) ) [Y] 0, and (5)
[X]( t ) 0) ) HXPX δ(r - a) (whereδ is the unit step function).

Effect of Diffusion within the Particle. To investigate the
effect of diffusion of Y within the particle on the uptake of X,
we varied the diffusion constant,DY, over a wide range. Unless
otherwise indicated, the values of all other relevant parameters
were chosen to represent a specific reference reaction (O3 with
oleic acid particles), wherea ) 1 µm, HX ) 0.3 M atm-1, PX

) 1 × 10-4 atm, DX ) 1 × 10-5 cm2 s-1, andk2 ) 1 × 106

M-1 s-1,20 with the values used forHX andDX being estimated
from similar systems.21-23

Figure 1 shows the concentration of Y calculated as a function
of both the radial position within the particle and the reaction
time for two different values of the diffusion constant:DY )
1 × 10-7 cm2 s-1 (1a and 1b) andDY ) 1 × 10-10 cm2 s-1 (1c
and 1d). It is evident in Figure 1a and 1b that the diffusion of
Y is faster than the rate of reaction with X and therefore a
uniform concentration of Y is maintained even as it reacts.
Figure 1c and 1d demonstrate the effect that a smallerDY has
on the concentration profile. A gradient in [Y] is established
within the particle, although the reaction still goes to completion
as X diffuses inward. In this case, the reaction rate is slower,
and the slow diffusion of Y within the particle acts as an
additional resistance to the reactive uptake of X from the gas
phase.

The effect of this resistance can be seen in Figure 2 where
the total concentration of Y in the particle is plotted as a function
of time for the two values ofDY. In the limit of fast diffusion
(DY ) 1 × 10-7 cm2 s-1), the resistor model predicts a decay
that is linear inx[Y]/[Y] 0 vs time,10-11 namely:

The initial rate of reactive uptake,Γrxn, can then be obtained
from the slope of the data in Figure 2:10,11,14

whereR is the gas constant,T is the temperature, andcj is the
mean speed of the gas. Fitting all of the data to eq 5 in this
manner provides a more precise measure of the rate of uptake
than is obtained from just the initial slope of [Y] vs time.

On the other hand, when diffusion is slow (as is the case for
DY ) 1 × 10-10 cm2 s-1), the resistor model and eq 5 are no
longer valid as demonstrated by the nonlinear plot in Figure 2.
Although the plotted function possesses the correct slope
initially, it slows at later times due to the slow diffusion. Since
experimental data often contain sufficient scatter to obscure this
nonlinear behavior, a linear fit may still appear to accurately
describe the rate of decay. If we use such a linear regression to
obtain an average slope for the slow diffusion data in Figure 2,
we find that it is approximately seven times smaller than the
slope for the fast-diffusion data. This slowing is due solely to
the decrease inDY since all other parameters, including the rate
constant and the particle size, are the same in both cases.
Consequently, the resistor model underestimatesΓrxn by a factor
of 7 if it is used to estimate the initial slope from the average
slope.

Diffusion, Particle Size, and Surface Concentration.To
explore the role of diffusion, we calculated [Y(r,t)] as a function
of both the particle size and the diffusion constant,DY. The
slopes obtained from a linear-least-squares fit to eq 5 were
calculated using the resistor model as in Figure 2, and each
was divided by the slope att ) 0 (when diffusion is not
limiting). These normalized slopes, shown in Figure 3, therefore
represent the slowing effect that decreased diffusion has on the
rate of uptake as calculated with the resistor model. When
diffusion is fast (DY g 10-7 cm2 s-1) and the particles are larger
than 0.5µm, there is little dependence on size (less than 5%
deviation), and the normalized rate approaches an upper limit
of one. Under these conditions, the resistor model does a good
job of describing reactive uptake. Interestingly, this rate also
approaches a lower limit (∼0.1) when diffusion is slow
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(DY e 10-11 cm2 s-1). In this case, the decay represents the
rate of reaction limited by the diffusion of X since it determines
reactant mixing. Here, the resistor model fails to include the
effects of smallDY and indicates a rate of reaction that is an
order of magnitude too small.

Though the decrease in the rate evident for smaller particle
sizes (a < 0.5 µm) and fast diffusion (DY g 10-9 cm2 s-1)
may seem counter-intuitive, it can be understood in terms of
the large degree of surface curvature. When X enters a small

Figure 1. Calculated concentration profiles of the condensed-phase species, Y, as a function of time and position within the particle. Parameters
used are:DX ) 1 × 10-5 cm2 s-1, k2 ) 1 × 106 M-1 s-1, HX ) 0.3 M atm-1, anda ) 1 µm. (a) and (b):DY ) 1 × 10-7 cm2 s-1. Fast diffusion
of Y results in a well-mixed particle. (c) and (d):DY ) 1 × 10-10 cm2 s-1. Slow diffusion of Y results in a concentration gradient within the
particle, and the rate of reaction is slower than in (a) and (b).

Figure 2. Calculated decays of [Y] as a function of time for two values
of DY: 1 × 10-7 cm2 s-1 and 1× 10-10 cm2 s-1 All other parameters
are as in Figure 1. Straight lines represent best fits of the resistor model
and provide estimates of the average rates of uptake using all of the
data.

Figure 3. The dependence of the rate of uptake on the radius of the
particle and the diffusion coefficient,DY, where the rate has been
normalized by its value att ) 0. As expected, the larger particles are
affected more by slow diffusion than are the smaller ones. The dashed
line indicates the 1µm particle size used in Figures 1 and 2. All
parameters other thanDY anda are the same as in Figure 1.
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particle, it “sees” the surface in more directions and thus can
escape more easily before reaction occurs than if it enters a flat
surface. This observation has been discussed previously by
Hanson et al.24 and explains why uptake coefficients measured
for flat surfaces in the lab must be corrected when applied to
small spherical particles.

The effect ofDY is also related to the gas pressure,PX,
because the surface concentration of X, [X]surf, is assumed to
be at its Henry’s Law equilibrium value () HXPX). We
calculated [Y(r,t)] as a function of both [X]surf andDY and then
used the resistor model to determine the normalized rate of
uptake, as in Figure 3. These rates, shown in Figure 4,
demonstrate the strong dependence onDY when [X]surf is high
(3 × 10-4 M). Because laboratory studies are generally
conducted at such high concentrations in order to complete the
reaction in minutes instead of days, diffusion may limit the rate
of reaction under these circumstances. Thus, for many reactions
the effects of diffusion may have to be taken into account to
obtain useful uptake coefficients from laboratory experiments,
but they will not be as significant under atmospheric conditions
where partial pressures are often orders of magnitude lower.

Validity of the Resistor Model. The conventional resistor
model assumes that the uptake of X is not limited by the
diffusion of Y within the particle. We are now in a position to
determine under what conditions this assumption is valid by
comparing the results of the resistor model to our numerical
solutions. In Figure 5 we show the minimum value ofDY

required to use the resistor model while incurring no more than
10% error in the calculated value of the rate of uptake. This
minimumDY is plotted as a function of particle size for [X]surf

ranging from 10-7 M to 10-4 M. It should be emphasized that
the most general solution to the diffusion-reaction equations
requires that the full dependence on all of the relevant
parameters,HX, DX, PX, DY, k2, anda, be taken into consid-
eration, and thus Figure 5 is strictly valid only for the reference
reaction (O3 + oleic acid particles). Use of a smaller rate
coefficient,k2, for example, would proportionally decrease the
minimum values ofDY that would ensure adequate mixing for
accurate use of the resistor model. However, this figure provides
a useful indication of the conditions under which the diffusion
of Y can be expected to affect the rate of uptake significantly.

Resistor Model Including Diffusion within the Particle.
Modified Resistor Model.The conventional resistor model used
to describe reactive uptake is not valid for systems in which

the diffusion of the condensed-phase species, Y, is slow.
Inclusion of an additional conductance, recently proposed by
Worsnop et al.,16 extends the validity of the resistor model to
smaller values ofDY:

This expression was derived by considering the concentration
gradient of Y within the particle and its effect on the diffusion
of Y. This resistor (1/ΓY

diff) must be coupled with the reaction
resistor (1/Γrxn), essentially representing a nonlinear differential
equation which cannot be solved analytically. Therefore, part
of the simplicity of the resistor model is lost and the solution
for [Y] must now be obtained numerically.

Though eq 7 accounts for the gradient of Y, it neglects the
effect on the diffusion of X. In the limit of smallDY, Y is
essentially stationary and the rate of reaction is determined by
the rate at which X diffuses through Y. The concentration
gradient of X within the particle is affected by the smallDY,
resulting in a faster rate of diffusion of X throughout the particle.
Thus, an accurate description of this limit requires an additional
conductance accounting for the increased rate of diffusion of
X, which we introduce here:

This additional resistor (1/Γdiff
X ) is placed in parallel with the

1/Γdiff
Y resistor of Worsnop et al., as shown in Figure 6. Thus,

the conventional reactive uptake resistor, 1/Γrxn, is modified by
the two diffusion resistors, 1/Γdiff

X and 1/Γdiff
Y . The conductance

Γdiff
Y represents diffusion of Y toward X, andΓdiff

X represents
diffusion of X toward Y in addition to that already included in
Γrxn. When diffusion of Y is fast, uptake will be determined by
Γdiff

Y and Γrxn. However, as long asΓdiff
Y . Γrxn, the rate of

uptake will be determined byΓrxn alone. When diffusion of Y
is slow, uptake is determined by bothΓdiff

X and Γrxn, and the
relative weighting of these two resistors is governed by the
magnitude ofΓdiff

Y .
DeriVation of Modified Resistor Model.The expression

in eq 8 was derived in the limit that Y does not diffuse at all
and assuming that [X] decays linearly from the surface

Figure 4. The dependence of the normalized rate of uptake on the
diffusion coefficient,DY (in cm2 s-1), and the surface concentration,
[X] surf. The effect ofDY is much more pronounced under laboratory
conditions than those typical of the troposphere.

Figure 5. Minimum value of DY required to use the conventional
resistor model to measureΓrxn from decays of [Y] with no more than
10% error. This value is a function of the particle size and the surface
concentration of X. The other relevant parameters,k2 andDX, are the
same as in Figure 1.

Γdiff
Y )

16RTDY

PXcj
[Y]
a

(7)

Γdiff
X ) 4RT

cj
HXDX

a[1 - ([Y]/[Y] 0)
1/3]

(8)
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(see Figure 7). A functional form for [X](r) can then be written,
and from this an expression for the flux of X entering the particle
can be derived:

wherex is the point at which the two reactants meet. The value
of x is rewritten asa‚([Y]/[Y]0)1/3 by assuming that the particle

is completely reacted away outside ofx but that it is not reacted
at all inside ofx (i.e., [Y] ) [Y] 0 for r < x and [Y] ) 0 for r
> x). The validity of this assumption is borne out in Figure 7
which shows the concentration profiles of [X] at three different
reaction times obtained with our coupled PDE approach
(with DY ) 0 cm2 s-1) as well as that predicted by eq 9. For
each time, the slope of [X] at the surface of the particle
(r/a ) 1) is approximated well by the slope of the line given
by eq 9. The resulting expression for the flux, eq 10, therefore
accurately represents the rate of uptake of X in the limit of no
diffusion of Y.

Comparison of Resistor Models.The utility of our
“dual-diffusion” modified resistor model is demonstrated in
Figure 8 for the reference reaction withDY ) 1 × 10-10 cm2

s-1 (all other parameters are the same as in Figure 1). The
figure shows the decay curves calculated with the conven-
tional resistor model, the Worsnop model (with the 1/Γdiff

Y

resistor) and our modified resistor model (with both 1/Γdiff
X

and 1/Γdiff
Y ). The exact solution obtained with the numerical

coupled PDE approach is also shown for comparison.

As with the Worsnop model, our modified resistor system
must be solved numerically. Nevertheless, the numerical
calculation of this resistor model is much less computationally
intensive than the full numerical solution of the coupled set of
PDEs. For example, the solution from the dual-diffusion resistor
model required about 8000 times less CPU time than the
corresponding solution obtained with the PDE approach (0.06
s vs 500 s on a Pentium V, 1.8 GHz computer with 512 MB
RAM).

It is clear that the most complete and accurate treatment
of the simultaneous diffusion and reaction of both X and Y
is obtained by solving the coupled PDEs. However, our
dual-diffusion resistor model offers a computationally
simple alternative to this full solution with improved
accuracy over both the conventional and Worsnop resistor
models.

Figure 6. “Resistor” model for uptake of a gas-phase species by a
particle. Each conductance is normalized to the gas-particle collision
rate.Γdiff represents the rate of diffusion of X to the particle,S is the
sticking coefficient,Sksol/kdes represents the rate of solvation into the
bulk, andΓsurf and Γrxn represent the rates of reaction at the surface
and in the bulk, respectively. In the dual-diffusion model presented in
this work, 1/Γrxn is modified by resistors representing diffusion of Y,
1/Γdiff

Y ,16 and diffusion of X, 1/Γdiff
X , in the particle.

Figure 7. Concentration profiles of X (s) and Y (s -) calculated
with the numerical PDE approach forDY ) 0 cm2 s-1 at three different
reaction times:t ) 1 s, t ) 5 s, andt ) 10 s. The profile of [X] used
to derive Γdiff

X is also shown for comparison (- - -). Note the close
match between the slopes of the two [X] profiles at the surface (r/a )
1). All parameters are the same as in Figure 1.

[X](r) ) HXPX(1 - a - r
a - x) (9)

fluxX ) DX(d[X]
dr )|r)a ) DX

HXPX

a - x
(10)

Γdiff
X )

fluxX

PXcj/4RT
) 4RT

cj
DXHX

a[1 - ({[Y] }/{[Y] 0})1/3]
(11)

Figure 8. Calculated decay profiles of [Y] using the numerical PDE
approach (s) and various resistor models whereDY ) 1 × 10-10 cm2

s-1 and all other parameters are the same as in Figure 1. The
conventional resistor model with onlyΓrxn (- - -) overestimates the rate
of reaction because the diffusion of Y is assumed to be fast. The resistor
model of Worsnop et al.16 (‚ ‚ ‚), with both Γdiff

Y and Γrxn, underesti-
mates the rate of reaction because the increase in the diffusion of X is
not included. The dual diffusion model of this work (s ‚), including
Γdiff

X , Γdiff
Y , andΓrxn, accurately accounts for diffusion of both X and Y

within the particle.
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Conclusion

The usefulness of numerically solving the coupled partial
differential equations describing simultaneous diffusion and
reaction within a particle has been demonstrated. The solutions
to these equations provide a concentration profile of each
reactant as a function of both time and position within the
particle. These solutions prove to be more accurate than those
obtained with current resistor models in cases where diffusion
within the particle limits uptake. The magnitude of this effect
depends on both the size of the particle and the surface
concentration of the species that is initially in the gas phase.
Under typical atmospheric conditions the rate of uptake will
not be limited by diffusion within the particle unless the particle
is extremely viscous or solid. However, it is clear that for some
laboratory experiments, in which larger particles and larger
concentrations of gas-phase species are used, the diffusion of
the condensed-phase species may represent a significant limita-
tion to the rate of uptake and should be included in the analysis.
The numerical solutions have also been used to improve the
conventional resistor model to describe more accurately the rate
of uptake when diffusion within the particle is limiting.

The numerical PDE approach offers a general method for
treating both diffusion and reaction within the particle and can
be used to solve systems more complicated than those presented
here. For example, it is possible to include surface and bulk
reactions occurring at different rates, secondary reactions of the
initial reaction products, heterogeneous concentration domains
within the particle, and time-varying rates of diffusion. This
approach should prove to be a useful tool for investigating
reactive uptake by authentic atmospheric particles as well as
those used in laboratory studies under a wide range of
conditions.
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